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Abstract 
 
Process migration means moving a process in the middle of its execution from one processor or 
host to  another, for a variety of reasons. Usually, processes are migrated with the aim of 
balancing the work load across the cluster so that the capacity of underutilized nodes are also 
exploited. The idea of process migration is borne out of the fact that in the over whelming cases of 
non migratory scenarios, the capacity of most nodes are under utilized. Allocation can be static or 
dynamic. By its very nature, process migration presents a difficult task with many complex issues to 
be resolved - transparency, scheduling and allocation policies, interaction with file system, naming, 
and scaling. In this paper we look at some well known implementations - Condor, Sprite, MOSIX 
and MPVM. We see that facilitating process migration adds considerable complexity to the kernel 
where it is implemented at the kernel level (Sprite, MOSIX) and hinders transparency if 
implemented at the user level. We also look at some analytical results regarding  process migration 
benefits for load sharing. We see that the cost of migrating a performance comes mainly from the 
cost of transferring state.  We conclude that migration, in the general case, should be used only 
sparingly, and often as a last resort. 
 
 
1. Introduction 
 
Process migration refers to the act of disembodying an active process on the machine that it is 
currently running, and transferring its state to another machine, where it will resume execution 
from the point at which it was suspended. The concept of process migration was borne mainly out 
of two observations[1] - a network of autonomous work stations connected by a high speed 
network represents substantial computing power , much cheaper than a high performance single 
server, and that most of the time, the capacity of these work station is grossly under utilized. Thus 
process migration presents an intuitively appealing idea whereby a CPU intensive job can be 
moved from a machine, which may be already heavily loaded, to another one, which lies idle. If e 
after migrating a process, the process can resume execution oblivious to the fact that it has 
migrated, then migration is said to be transparent[2]. Transparency also means that program code 
does not have to be different for migratory and non migratory environments. Thus we see, that the 
fundamental goal of process migration is load balancing with transparency as an extremely 
desirable characteristic. In this paper, we shall look at the following implementations - Condor[3], 
Sprite[2], MOSIX[4], and MPVM[5]. We shall see how these systems accomplish (or fail to 
accomplish as the case may be) these goals, the trade offs they make, and the conclusions that can 
be drawn from the   implementors' experience. 
 
In the next section, we shall look at why process migration, at least theoretically, maybe a viable 
alternative to static load balancing. In section 3, we shall take a brief look at our case study systems 



- their motivation, design goals and philosophy. In section 4, we shall go through, the various issues 
on which we analyze these systems - scheduling and allocation, interaction with file systems, 
naming, transparency and scale. In section 5 we shall look at the  implementation of the migration 
schemes in these systems, and how they address these issues. Then in section 6 we shall take a look 
at some performance results of these systems when compared with non migratory or static schemes. 
In section 7, we briefly go through some analytical results in this field and how the results of the 
case studies match these. Finally in section 8 we conclude with our general observations on the 
suitability of process migration. 
 
 
2. What can migration achieve? 
 
It is possible that when a process is created, say, using the exec system call in UNIX, it can be 
statically allocated to a processor in the pool such that load is balanced. The problem arises due to 
the fact that loads can vary greatly over time, and generally it is not possible to have apriori 
knowledge of load distribution.  Also, how would a target processor be chosen in the first place? 
Moreover, in a network of workstations, there is the concept of ownership of workstations [2], so it 
is appropriate that a process be evicted from a previously idle work station when the user reclaims 
it. Also, a static scheme wouldn’t be transparent, implying that it would be up to the user or the 
process to decide which machine to execute on. Thus if the scheme has support from the kernel, 
then performance can be greatly improved[1]. 
 
The important features one hopes to achieve while implementing a process migration facility [1] 
would be automatic allocation and scheduling, with fairness, transparency, automatic eviction and 
over all performance improvement by load sharing. Of course, particular implementations have 
their own priorities with respect to these goals, for e.g., in the Sprite network operating system, 
transparency, eviction and performance improvement were the main considerations [6], while in 
MOSIX the prime consideration was dynamic load balancing[4], and in Condor[3] where the 
scheme was implemented at the user level, transparency was sacrificed for ease of implementation, 
load balancing and automatic eviction. 
 
 
3. Overview of Case studies 
 
The Condor system [3], developed at the University of Wisconsin, is a scheduling system for an 
environment of UNIX workstations, networked through a high speed LAN. The primary aim of 
condor is to identify idle workstations in the environment and schedule back ground jobs on them 
for load balancing. Also important was to evict the process as soon as the user reclaims the 
workstation so that the owner of the remote machine is not burdened by the additional load on his 
or her system. Condor is implemented entirely in the user space, by having programs linked to the 
Condor migration library routines during compilation.  
 
The Sprite Network Operating System, developed at the University of California at Berkeley [7], 
represents an interesting case study of a system where migration facilities are part of the kernel.  
Transparency was a prime consideration here. Sprite was implemented in a fairly homogenous 
environment of Sun workstations connected over a very fast Ethernet , running the Sprite OS, 
whose kernel call interface was very similar to BSD UNIX [2], the important difference being a 
high performance sophisticated network file system and caching mechanisms. This, and other 



aspects of the Sprite OS, as we shall see later, was very conducive to developing a migration 
facility at the kernel level.  
 
The MOSIX system [4], developed at the Hebrew University in Israel, is a high performance 
cluster computing system consisting of networked work station of Pentium based PCs, connected 
by a high speed LAN. MOSIX  consists of a set of additions  to the UNIX system[8], with the 
primary feature  being aggressive and dynamic load balancing. The pre-emptive migration scheme , 
implemented at the Kernel layer, has sophisticated mechanisms for "adaptive load sharing"[8], and 
transparent execution. 
 
MPVM (Migratable PVM) [5] developed at the Oregon Graduate Institute of Science and 
Technology, is a migration transparent version of PVM.  The PVM (Parallel Virtual Machine) [5] 
is a software system that allows a network of heterogeneous workstations to be viewed as a single 
virtual machine with distributed shared memory. In the original implementation of PVM, processes 
were allocated to processors statically. Migration allowed the usage of idle workstations in a 
dynamic manner. MPVM is implemented at the user layer. We shall also look at the performance of 
MPVM compared to PVM implemented over MOSIX. 
 
 
4. Migration issues 
 
Obviously, achieving the goals of load balancing and transparency with as low over head as 
possible presents a formidable task. The following are some of the main issues to be dealt with : 
 
(1) Allocation and scheduling: How is a target node chosen? What are the factors taken into 
consideration while choosing a destination host?   Is load balanced dynamically, or only reallocated 
during special circumstances like eviction or imminent host failure ?     Does the previous history of 
allocation on a node make that node more attractive due to the presence of "warm caches" [6], also 
known as cache affinity scheduling ? Considering that all of the above systems represent loosely 
coupled environments, how much of a difference can such a consideration make?  Similarly, what 
is the best allocation policy for an I/O intensive process? 
 
(2) Once a target has been chosen, how is the process state saved and transferred? For e.g., 
would virtual memory pages be transferred all at once, increasing the latency between process 
suspension and resumption, or transferred on a demand-paged basis thus speeding up migration? 
An important consideration  over here is how much of "residual dependency" [6] do we allow on 
the ex-host ? 
 
(3) How is migration supported by the underlying file system for kernel level schemes? Are files 
assumed to be accessible from any point?     For transparency, a transparent file system would itself 
seem to be a prerequisite.  
 
(4) How are name spaces dealt with ? Do process Ids, file descriptors etc change with migration? 
How does global naming help?  How are sockets and signals managed ? 
 
(5) What are the scaling considerations that have been incorporated into the design ? 
 
(6) What is the level of transparency? 
 



We shall consider the case studies with respect to the above factors. 
 
5. Comparison of Implementations 
 
Allocation and scheduling: 
 
In Condor[3], jobs are only allocated or migrated to remote works stations if the "leverage" [3] is 
significant, i.e. the ratio of remote capacity to the capacity needed at the local system to support 
remote execution should be large. Each work station has a local scheduler and a back ground 
queue, which holds the jobs submitted by the user. A central co-coordinator is present on one work 
station. Each station keeps information regarding its job load. The central coordinator uses a polling 
mechanism to see which stations are available, and allocates capacity. The work station decides the 
scheduling, according to the relative priority of the jobs. When the owner reclaims the machine the 
process is "check-pointed" (which we explain below) and state transferred to the home machine.  
The remote process does wait for an interval of up to 5 minutes, to see it the machine becomes 
available again, since reclamation periods tend to be short. The main points to be noted here are 
that Condor does not really take into account affinity based scheduling. Whether such a policy 
would make sense in a loosely coupled system where all remote resources are freed up and no 
residual dependencies remain is debatable. 
 
In Sprite[6], processes are migrated during two occasions - when a resource intensive program is 
about to start, or during eviction from a remote host. Host allocation is done using a combination of 
a load-monitoring daemon on each host and a centralized idle-hosts database file. Idle hosts are 
selected based on the history of idle time length. This factor is given more priority than the 
presence of "warm caches" since eviction represents a greater cost. Thus host or cache affinity is 
not considered in Sprite.  After eviction, the process is allocated to another host if available. Also, 
Sprite has the policy of leaving "minimal residual dependencies" on the ex-host [6], meaning all 
state is transferred out as soon as possible. 
 
MOSIX [10] has the most complicated scheduling mechanism among all the systems. This is 
because MOSIX differs in its design goal in a fundamental way - load balancing is done 
continuously, not just during creation or eviction of a process. Processes get migrated anytime the 
cluster gets unbalanced, through adaptive scheduling[4]. If a process requirement exceeds a certain 
threshold, then a process becomes a candiate for migration. Each process must also run for a bare 
minimum time on the processor to prevent thrashing. A load vector is maintained at each node, 
which contains information about the load of a random subset of neighboring nodes. This load 
vector is constantly updated through "load information dissemination" [4] which is a completely 
decentralized process. Candidate target nodes are chosen from this load vector. During allocation, 
I/O bound processes are allocated on nodes with which this process has maximum I/O 
communication (I/O affinity).  Also, a process that has a history of forking other processes becomes 
a  good candidate for migration. 
 
 
In MPVM[5], a unit of work is known as a 'task' . MPVM uses a Global Scheduler (GS), which is 
basically a centralized resource manager. The GS decides the 'which' (task), 'when' and 'where' 
(target node) of migration. Migration is usually done during work creation and eviction  or when a 
node is under excessively heavy load (Dynamic allocation)  Idle hosts are located by the GS in a 
manner somewhat similar to Condor. Each node has a PVM demon (pvmd) installed on it. When a 
decision has been made by the GS, a signal is sent to the pvmd on the node from which the process 



has to migrate. Target allocation is based on idle work station availability. MPVM does not use 
cache or I/O affinity considerations. 
 
 
 Transferring of State: 
 
 Migration in Condor is basically a combination of the "Remote Unix" (RU) facility combined with 
"check-pointing" capability [3]. When RU is invoked, a "shadow" process runs as a "surrogate 
process” on behalf of the remote process on the home machine. System and other location 
dependent calls are forwarded to the surrogate process. The  "check-pointing" facility is to save the 
state of the process, so that the process can be restarted elsewhere. Saving the state involves writing 
the process's data and stack segments to permanent storage using the file system [9]. In  a uniform 
file system environment, this is equivalent to migration (since the file system is mountable from 
any host), while in environments where the nodes do  not have a uniform view of the file system, 
calls are forwarded via RPC to the shadow process on the home node, and the results are sent 
back[9].  Since condor is implemented at the user space, to access process state data, a "check-
pointing" library is used to give ability to a process to check point itself.  Condor cannot save the 
state of IPC structures like sockets, pipes and signals. 
 
In Sprite [6], since migration is implemented at the kernel level, considerable amount of effort has 
gone into supporting migration. Most of the migration overhead involves the transfer of virtual 
memory. Remember that Sprite uses a network wide file system. Virtual memory is frequently 
written to backing storage. Also,  during transfer, dirty pages are flushed out of the cache. The 
virtual memory file is then remounted at the new host on a demand-paged basis.. Other process 
state info like openfile descriptors, file handlers , message channels etc represent less overhead. 
 
In MOSIX [4], once a target node has been picked there is an exchange of messages between 
source and destination. The destination node can choose to reject the request. MOSIX uses a 
demand paged transfer of virtual memory. Because of kernel level implementation, it is easy to 
store the process and processor states. Even thought the environment is generally hardware-
heterogeneous, migration is allowed only between homogenous processors. In fact, process 
migration is the only feature in MOSIX that is restricted by homogeneity. 
 
In MPVM [5], which is a user level implementation, a process establishes a TCP connection with 
the destination node. All process state that can be captured by the application using the pvm library 
functions is transferred to the destination and a skeletal process is constructed. Note that even 
though PVM supports heterogeneous clusters, migration can only be performed between 
homogenous nodes in a cluster. OS specific state cannot be migrated due to the fact that much of it 
is not observable by the user level implementation. 
 
File System and Migration 
 
As mentioned before Condor[9] can support both uniform and non uniform views of the file 
system. In an NFS like environment, where any file can be remotely mounted, check point/restart is 
simpler to implement.  File state information such as open file descriptors, seek position etc are 
captured at check point time. It also supports non uniform view of the file system through 
forwarding mechanisms via RPC when Condor is implemented over a wide area network.  One 
important assumption is that the state of the checkpoint file is not altered between checkpoint and 
restart. 



 
Sprite uses a globally named uniform file system, thus file access is completely transparent across 
nodes. The cache flushing mechanism of the file system is used for transferring virtual memory, as 
well as for keeping a consistent view of the file system. As we shall see, the most important aspect 
of transparency in sprite comes from its global naming scheme. 
 
MOSIX uses the UNIX file system, and thus, has a uniform transparent view of the file system. 
This facilitates transferring of virtual memory files. 
 
MPVM assumes that a global file system like NFS exists on both source and target nodes. This is 
required for file I/O migration to work in MPVM. To accommodate file I/O migration, a set of 
wrapper functions are provided in the PVM file I/O library. This allows the PVM library to 
maintain a list of open file descriptors. However, note that, unlike Sprite, the file descriptors will 
change across machines. 
 
Naming 
 
As seen above, file name spaces in Condor can be global or non uniform. Also due to lack of global 
names for objects such as sockets, pipes etc the state information regarding these objects cannot be 
migrated. 
 
Sprite uses a completely global naming scheme - Files, devices, process ids and even 
communication schemes are globally named. Files are logically centralized but physically 
distributed [6]. An interesting aspect in Sprite is that IPC mechanisms are also completely 
transparent because of this naming scheme. Objects communicate with each other using a "pseudo 
device" [6] which is an additional layer of abstraction thrown in to support transparency. Only the 
kernel is aware of the actual location of the pseudo device. Thus for e.g., even migration of socket 
IPC which is typically unsupported in other schemes, poses no problem to Sprite. 
 
MOSIX too uses a global naming scheme which makes the implementation transparent. Universal-
to-local mapping routines are implemented for managing file names. 
 
MPVM assume a global naming scheme for files, even though PVM itself may run across a 
heterogeneous cluster. File descriptors, process Ids and signals are not global and not migrateable,  
thus hindering the goal of transparency in MPVM.  
 
 
Scaling Considerations 
 
We see that in Condor, there is a centralized coordinator who does the allocation[3]. However each 
node is also autonomous since it only needs to keep track of its own load state. If the coordinator 
fails, new requests are affected, not the requests that are already allocated. These aspects give 
Condor a certain degree of scalability 
 
Sprite can scale up to a few hundred work stations [2] Further scaling is limited by the fact that a 
centralized idle-hosts database file is used. 
 
MOSIX scales well due to a variety of reasons [4].  First, nodes are completely autonomous, and 
the scheduling is totally decentralized. Each node maintains information only about a random 



subset of nodes, usually those at close physical proximity due to I/O affinity considerations. Each 
processor also sends out information regarding its load to only a random sub set of processors. All 
communication is carried out only between the concerned 2 nodes during migration. MOSIX also 
has what is known as "Architectural Symmetry" [4] whereby services are distributed across nodes. 
Moreover each node need have only partial information about the whole cluster. 
 
MPVM uses 2 party communication for transferring state, however scaling is limited by the fact 
that a centralized resource manager (GS) is used.   
 
 
Transparency 
 
Condor is not really transparent to the user, since applications have to be linked with the Condor 
library routines. However the actual check pointing and restarting procedures are transparent to the 
process But the lack of a truly global naming and user level implementation   hinder  transparency. 
 
Sprite, in contrast, represents a truly transparent scheme due to its global naming scheme of files, 
devices and IPC mechanisms using pseudo devices. For e.g., file system transparency was 
maintained by keeping the object that manages the name of the file (file server) separate from the 
object that contains the file (I/O server)[6] Transparency was one of the most important goals 
Sprite, even at the cost of additional complexity. 
 
MOSIX is completely transparent, due to its naming schemes. Location dependent calls are 
forwarded to the home nodes. However, MOSIX also has the ability whereby the user process can 
explicitly request to be migrated using the migrate() system call, which also takes the destination 
node as its argument. When this happens, the automatic scheduling scheme is bypassed. This 
feature is useful for benchmarking the performance for MOSIX. 
 
Even though MPVM strives to achieve transparency, it is not really implemented due to the fact 
that process state information like process ids that are known and used by the application process 
change upon migration. 
 
6. Performance Results 
 
Condor performance results indicate that it is ideally suited to long running computationally 
intensive jobs [4]. Long jobs are check pointed less often, since they finally end up on a station 
experiencing no activity. Condor is not suited to short jobs. 
 
In Sprite, since evictions are usually  infrequent, most of the latency observed by users is due to the 
overhead associated with remote execution. This is similar to active migration, except that no 
virtual memory is transferred.  The best results for Sprite were  achieved when using the pmake 
program when,  using 10 hosts was about 5.5 times as fast as when using a single host. It is worth 
noting that migration has been one of the most fragile aspects of Sprite [1], leading to frequent  
kernel breakdowns. This often happened because different kernel versions were used. As a result, 
migration was later disallowed between kernels of differing version numbers. 
 
A study of the performance results of MOSIX [4]shows that performance lags the static optimal 
balancing of loads by only a factor of 2%. 
 



MPVM does not use check point migration [5]. The entire virtual address space is transferred on 
migration in contrast to a demand-paged scheme, which adds to the latency till restart. Performance 
results have shown that this is the dominant cost in migration.  A comparison of MPVM with PVM 
over MOSIX shows that the native support for migration in MOSIX results in a much better 
performance than MPVM.  
 
 Condor Sprite Mosix MPVM 

Scheduling 
and  
allocation 

Centralized allocation. 
Individual scheduling. 
Migration only during 
creation or eviction 

Uses centralized file 
for host search. 
Migration during 
process creation and 
eviction 

Completely 
distributed 
allocation system. 
Highly dynamic 
load balancing 

Centralized 
allocation. Individual 
nodes negotiate. 
Migration during 
creation, eviction 
well as dynamic 

File  
System 

Uniform file system – 
state transferred. Also 
supports non uniform 
file system through 
RPC 

Network wide 
transparent , uniform 
file system similar to 
NFS 

Network wide file 
system similar to 
NFS 

Assumes existence of 
NFS (or other global 
file system) 

Naming Global name for file 
systems. Localized 
names for process ids , 
file descriptors etc. 

Global naming 
scheme 

Global naming 
scheme 

File names are 
global. Process ids, 
descriptors etc are 
not 

Transparency Not fully transparent Fully transparent Fully transparent Not fully transparent 

Scale Scalable, but uses 
centralized coordinator 

Scalable to few 
hundred work 
stations, since central 
host-file is used 

Very scalable. 
Has completely 
distributed 
policies 

Scalable to certain 
extent. Central 
resource manager vs 
autonomous node 
communication. 

Table 1: A summary of comparisons. 
 
7.  Analytical results in Process Migration 
 
Eager et al [10] have shown analytically that migrating active processes for the purpose of load 
sharing offers only modest performance benefits over a non migratory load sharing scheme, and 
that too under fairly extreme conditions. Moreover, they also show that migratory load sharing 
never yields major performance benefits. This is generally consistent with the performance results 
of the systems we have considered, whereby even in the best case,  performance benefits of only 
25% were achieved. Efficient migration is indeed a tough call, since by its very nature migration 
presents considerable overhead. However, load sharing may not always be the only aim for 
migration. Evicting processes so that the machine resources may be reclaimed by the owner is an 
important motivation. Also, there can be cases where a process has to be migrated from a host due 
to imminent host shutdown. From a point of view of load sharing too,   it is not hard to see that long 
running computationally intensive jobs  with infrequent migrations, stands to benefit from a 
migratory load sharing scheme. 
 
 



8. Conclusions 
 
It is worth quoting Fred Douglis, [1] who implemented the migration facility in Sprite, at this point. 
 
 "..Sometime ago shortly before the file system was to be reimplemented, we had a lengthy discussion about the future 
of process migration in Sprite. The consensus at that time was that migration was probably a mistake : it was too 
difficult to implement.. ...In retrospect, I may safely say that our initial lack of faith was misplaced. Process migration 
has evolved from a toy prototype to a mature, extremely useful facility. Users are thankful not only for the significant 
improvement they see when using their hosts, but also for the minimal impact that other users have on their work 
stations." 
 
Process migration is difficult. Providing efficiency and transparency is even more difficult. A 
global naming scheme is seen as an essential ingredient for providing transparency [1], and hiding 
remote execution. Techniques like affinity scheduling are out weighed by other considerations like 
time to eviction in a loosely coupled environment where migration is usually implemented. There 
are scenarios, like long running jobs or extremely variable dynamic loads, where the pay offs may 
justify the efforts. However these do not represent the general case.  If an optimal or nearly optimal 
static scheduling can be done apriori, then a migratory load sharing scheme is not viable. The 
consensus at this time about migration is that, generally, it should be used only as a last resort. 
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